Login
If you have any trouble logging in to your account, contact us.
Sign Up
To start 3D printing or Laser Cutting, you'll need to create an account here. Once done, you'll be able to upload your files and get live quotes of yours parts
Already have an account? Log In
Modeling for 3D printing requires attention to a number of optimal practices.
First, there is an inherent limit to the mechanical properties of the materials used in these limits which can be tested using the software simulation model. It is also important to take into account that the created file will be a virtual representation that allows 3D printers to create a physical object.
In this part, you will see the key points to create a suitable model with Fusion 360 for 3D printing.
Note that we distinguish in CAD two types of modeling: parametric modeling and direct modeling.
Parametric modeling (design for functional parts)
Parametric modeling is suitable for the modeling of parts with functional geometries (mechanical parts, such as a gear, for example). Models are then further refined by parameters which can be easily modified.
Freecad,
There is the Model workshop, which allows one to draw a sketch in a two-dimensional plane, which can then be transformed to 3D with the volume creation operations. It is also possible to directly create volumes (cube, cylinders, spheres …) without going through the sketch.
The Model workshop contains assembly functions.
The Simulation workshop is particularly useful
Direct Modeling (Design for Aesthetic Parts)
Direct modeling offers more flexibility in terms of creativity and aesthetics. In fact, by manipulating curves and surfaces one can obtain very beautiful pieces with complex and organic shapes.
This is a so-called surface modeling, as on other software like
Fusion 360 operates on a spline system ( curves passing through fixed points), and more precisely T-spline. The fundamental difference between T-splines and NURBS surfaces is the presence of star points. The star points allow
However, one possible disadvantage of direct modeling is that the parts created are not necessarily functional because of the direct modeling approach (organic shapes).
The Sculpt workshop allows users to sculpt by drawing curves on the basis of T-Splines. We then move in 3D with volume creation operations; Create > Extrude / Revolute …”.
Then there is the Patch workshop which allows the user to close and delineate the surfaces,
with the aim of creating volumes.
One major advantage of Fusion 360 is that it can transition from the surface module to the volume module very quickly.
Some important rules to respect in modeling:
Christmas is coming soon, it is thus necessary time to make your own candle holder, for the decoration of your Christmas tree, for example.
Begin your sketch by using the tool splines in the sketch menu. Then close your surface.
Create then a volume with an operation of Revolution, in the workshop Create.
To create the base on which will be positioned the candle, it is necessary to separate the body
Then, in the Modify Menu, select the Split Body tool.
You can now see two different bodies. But be careful, if you wish to print separately the two bodies, it is necessary to transform them into two separated components.
NB: Even if 2 bodies are different, they will be printed as a single component. As evoked previously, if you wish to print in various materials these two bodies, it is necessary to transform the bodies into two separated components.
To modify the appearance, right click on the body (Appearance), then select the desired material. This is only for the visual appearance: the choice of the material to take into account the mechanical resistance is made in the Simulation workshop.
Uncheck the second created body (the base), by marking in the arborescence of modeling the yellow light which becomes then white. Then use the function Shell to give a thickness to the body #1.
Recreate a new sketch, and throw the view on the same plan as the very first created sketch (SKETCH → PROJECT).
Draw then a rather fine strip, then extrude this strip according to the normal for the plan, and symmetrically with regard to the plan.
Create then the intersection between the 1st created body and the
Reproduce this shape, with the Circular Pattern tool. You can determine the number of desired bodies, which will impact directly on the luminosity emanating from your candle holder.
Your candle holder is now ready for 3D printing. You can from now upload it on Sculpteo.
Simulation Workshop
In our case, a simulation of the mechanical resistance of the part and the weak spots is not a very useful study because of the very light weight of a candle.
Nevertheless, it can be interesting just to test the Simulation workshop.
Go to the module Simulation and select the desired material.
We selected here some Polyamide (PA12) material, often used in SLS 3D printing. We apply a load of 5N (that is the strength of the weight of a candle of 500g, if we applicate the physical formula W = m * g, g being the gravitational acceleration and whose the value is around 10). After solving, we can immediately locate the most fragile zones (in red).